Does Deeply Bound Kaonic State Exist?

M. Iwasaki @ Tokyo Institute of Technology

MESON BOUND STATES as an impurity in Nuclei

FROM QCD TO NUCLEAR FORCE?

QGP SEARCH RHIC High Density - High Temperature - Unstable

IMPURITY IN THE NUCLEAR MATTER

Mesons

INVARIANT MASS Vector Mesons Medium Density - Low~Medium Temperature - Unstable

BOUND STATE , , , K, ...

Medium~High Density - Low Temperature - Stable

Strange-Baryons HyperNucleus

FROM QCD TO NUCLEAR FORCE?

MESON BOUND STATES

Pion in Nuclei

First observation of **Deeply Bound Pionic State 1s Pionic State Observed!** Complex of $(1s) (3p_{3/2}^{-1})_n$ (1s) $(2f_{5/2}^{-1})_n$ Surface Effect **Sn Isotopes**

What's about other mesons?

KpX Collaboration List

Japan

Tokyo Institute of Technology (UTMSL@ E228) M. Iwasaki University of Tokyo R.S. Hayano, T.M. Ito, S.N. Nakamura, T.P. Terada KEK

H. Outa, T. Taniguchi, Y. Yamashita

Canada

TRIUMF

D.R. Gill, L. Lee, A. Olin, M. Salomon, S. Yen

University of Victoria

K. Bartlett, G. A. Beer, G. Mason, G. Trayling

USA

California Institute of Technology / California State University R. Seki

Kaonic Hydrogen Puzzle

What is the Present Situation?

 $\overline{K}N$ is very strongly ATTRACTIVE!

KpX Scattering data (1405) Compilation of other atomic data Batty-Friedman-Gal Phys.Rep. 287 (1997) 385

Deeply-Bound Kaonic State question is how narrow and how deep it can be! Anomalous shift and width of Kaonic ⁴He $(3d \rightarrow 2p)$ E + i /2 = 42(8) + i 27(10) eV (?) Helium bubble chamber data $KNN \rightarrow YN$ kaon two nucleon absorption ~ 20%! WHY SO MUCH? (stopped K⁻, [±]) experiment $KN \rightarrow Y$

M. Iwasaki @ Tokyo Institute of Technology

Theoretical Prediction Akaishi and Yamazaki Strongly attractive for isospin 0

If it exist, what it means?

(1405) = K ⁻p bound state 3 quark state? KN interaction in nuclei SU(3) Higher nuclear density SU(3), chiral symmetry Kaon condensation?!

light neutron star

Anomalous shift and width of Kaonic ⁴He $(3d \rightarrow 2p)$

Background Neutron?

How to Produce? Nuclear Auger from Atomic State of Kaon

Background Processes

Quasi-free hyperon production Hyperon production into free space KN YN Hyperon decay cascade reaction N N conversion elastic and breakup by , N, Y

Kaon two-nucleon absorption KNN YN Lower branch for higher deep-K formation!

Negative re-absorption

Hypernuclear formation and decay at rest reaction meta-stable state N N conversion Needs Detailed Simulation Helium Bubble Chamber Pion momentum distribution Kaon at rest in Helium

Comparison of the branching ratio to the final states

Final state	Simulation	Bubble chamber data
$\Sigma^+\pi^-t$	9.55	9.3 ± 2.3
$\Sigma^+\pi^- dn$	0.85	1.9 ± 0.7
$\Sigma^+\pi^-pnn$	0.79	1.6 ± 0.6
$\Sigma^+\pi^0 nnn$	1.81	3.2 ± 1.0
Σ^+nnn	1.31	1.0 ± 0.4
Σ^+ total	14.31	17.0 ± 2.7
$\Sigma^{-}\pi^{+}t$	4.51	4.2 ± 1.2
$\Sigma^{-}\pi^{+}dn$	0.99	1.6 ± 0.6
$\Sigma^{-}\pi^{+}pnn$	0.39	1.4 ± 0.5
$\Sigma^{-}\pi^{0}$ ³ He	1.38	1.0 ± 0.5
$\Sigma^-\pi^0 dp$	0.68	1.0 ± 0.5
$\Sigma^-\pi^0 ppn$	0.25	1.0 ± 0.4
$\Sigma^- dp$	1.78	1.6 ± 0.6
$\Sigma^- ppn$	1.17	2.0 ± 0.7
Σ^- total	11.15	13.8 ± 1.8
$\Lambda \pi^{-3}$ He	11.48	11.2 ± 2.7
$\Lambda\pi^- dp$	18.99	10.9 ± 2.6
$\Lambda\pi^-ppn$	4.98	9.5 ± 2.4
$\Sigma^0 \pi^{-3} { m He}$	2.15	0.9 ± 0.6
$\Sigma^0\pi^- dp(ppn)$	0.94	0.3 ± 0.3
$\Lambda(\Sigma^0)\pi^0 dn(pnn)$	23.24	22.5 ± 4.2
$\Lambda(\Sigma^0) dn(pnn)$	10.56	11.7 ± 2.4
$\Lambda(\Sigma^0)\pi^+nnn$	2.20	2.1 ± 0.7
$\Lambda(\Sigma^0)$ total	74.55	69.2 ± 6.6

Charged

Proposed Setup down stream view

Simple Fitting Gaussian Shape Background is Assumed

Conclusion

Feasible for $B_{K} > 100 \text{ MeV} \text{ B} > 2 \%$ Study two nucleon absorption process Study K⁻⁴He atom x-ray using Si(Li) Partially Approved in KEK-PS PAC Run in 2002 for 80 shifts (JHF ...) We need Neutron counters of about 4000 liter! Experimental budget and man power is tight Again JHF!

Meson Bound State Hunting

Pion : precise physics

Sn isotope 2001 @ GSI

, interaction can be studied 2002 @ GSI even from the spectral shape

Kaon: striking if it exists 2002 @ KEK really below threshold? -- nothing can be found without try

Peak Hunting is Fun!

Spare OHPs

Energy Spectrum and the Decay mode?

Other Target of Interest

